บทดวามวิชาการ

Argan oil

วัมล ศรึ่ัต

เกิดมาโดดเดี่ยวท่ามกลางทะเลทราย น่าจะมีดีอะไรบ้าง ต้น argan มีชื่อทาง วิทยาศาสตร์ ว่า Argania spinosa (L.) Skeels อยู่ในตระกูล Sapotaceae (1) เป็นพืชพื้นเมือง ของโมรีอคโค แถบตะวันตกเฉียงใต้ พบมาก เป็นอันดับ 2 รองจากต้น holly oak (2) ต้น argan เป็นต้นไม้ที่เจริญเติบโตช้า มีหนาม อาวมีรูปทรงเป็นพุ่ม หรือ สูง 7 หรือ 10 ม. (3) มีอายุยืนยาวถึง 150 ถึง 200 ปี และทนทาน มากต่อความแห้หแล้งและภูมิอากาศร้อน เจริญ ได้ในพื้นที่แห้งแล้งหรือกึ่งแล้งในโมร็อคโค

ตะวันตกเฉียงใต้ ตั้งแต่ ซาฟี (Safi) จนถึงชายขอบซาฮารา (Sahara) โดยมีมหาสมุทรแอตแลนติค อยู่ทางด้านตะวันตก และภูเขาแอ็ตลาส (Atlas) อยู่ทางด้านตะวันออก (4) ครอบคลูมพื้นที่กว่า 320,000 ตารางไมล์ (3) ตั้น argan มีระบบรากที่เขึงแรงจึงสามารถช่วยยึดดินและต้านทานการ กัดเซาะของน้ำเละลมมได้ มีการใช้ส่วนไม้ในการเป็นเชื้อเพลิง ส่วนใบและผลเป็นอาหารแพะและ ใช้น้ำมันในการปรุ่อาหารและเป็นยาพื้นบ้าน (4)

ผล argan มีขนาดเท่าลูกพลัม (5) รูปร่างกลม รูปไข่ หรือเป็นรูปโคน มีเปลือกหนา ภายใน ผลจะมีเมล์ดดเปลือกแข็ง ซึ่งถูกปกคลุมไว้ด้วยเนื้อสีขาว (miky pulp) ขนาดของเมล์ดจะเท่ากับ 1 ใน 4 ของน้ำหนักผลสด เมล็ด argan (argan nuts) ประกอบด้วยเนื้อในเมล็ด (kernels) สีขาว จำนวนไม่เกิน 3 kernels โดยสามารถสกัด argan oil ได้ ร้อยละ $30-55$ ทั้งนี้ขึ้นกับวิธีการสกัด (4) argan oil ที่สััดโดยวิธั้งเงเดิม มีสีแดงหม่นใส ำหรับน้ำมันที่สกัดโดยใช้ n-hexane จะมีสีเหลือง และมีกลิ่นรสเฉพาะตัวอ่อนๆ (6) กลิ่นเฉพาะตัวเนื่องจากมี arganine อยู่ด้วย (7) รสชาติคล้าย hazel nut (8) เดิมไม่ใช้รับประทานแต่ใช้ในการทำสบู่ (9) มีการใช้ argan oil เป็นยาพื้นบ้าน ใหหมู่ชาว Berber ในการบำบัดสิววัยรุ่น อีสุกอีใส รูมาติสซึ่ม และระดับคอเลสเตอรอลสูงในเลือด (3;10)

เป็นระยะเวลาหลายปีที่มีการรุกรานพื้นที่ทะเลทราย ทำให้ป่า argan ในเขตโมร็อคโค ตะวันตกเฉียงใต้ลดน้อยลง เมื่อ 20 ปีที่แล้ว จึงมีความพยายามเพิ่มมูลค่าทางเศรษฐกิจของต้น argan แต่เพิ่งจะประสบความสำเร็จในการผลิต argan oil คุณภาพสูงที่มีการรับประกันคุณภาพ ในอุตสาหกรรมขนาดใหญ่ได้ ปัจจุบัน argan oil พบมีวางจำหน่ายในประเทศที่พัฒนาแล้วส่วนใหญ่ แม้ว่าราคาจะแพง แต่กัจัดเป็นการส่งเสริมการรักษาป่า argan ให้คงอยู่ (11)

ปร=1Лทレองห้้าม้หแด=กรดางข้ห

Argan oil จัดเป็น drying oil (น้ำมันที่สามารถแห้งได้ที่อุณหภูมิห้อง) (12) ได้จากส่วน เมล็ดของผล ปริมาณน้ำมันที่ได้้ื้้นกับรูปร่างของผลที่ต่างกัน คือเมล็ดจากผลรูปไข่ รูปกลม และ รูปกระสวย ให้น้ำมัน $11.55,8.50$ และ 5.02 กก. /เมล็ด 100 กก. ตามลำดับ (13) argan oil จัดเป็นน้ำมันบริโภคที่ดีที่สุดในโมร็อคโค ประกอบด้วยกรดไขมันชนิดไมอิ่มตัวสูงกว่ากรดไขมัน ชนิดอิ่มตัว ถึง 4.5 เท่า (14) ประกอบด้วย กรดโอเลอิค และกรดไลโนเลอิค ร้อยละ 55.4 และ 24.4 ตามลำดับ (15) กรดไขมันอื่นๆ คือ กรดพาลเมติค กรดสเตียริค และกรดไลโนเลนิค (16) x่วผปs=novciov 9 is argan oil

Argan oil มีอายุการเก็บได้นานหลายเดือน เนื่องจากมีสารประกอบกลุม polyphenols และ tocopherols อยู่ด้วย (17) พบว่าน้ำมันที่สกัดโดยวิธีพื้นบ้าน (ไม่ใช้ตัวทำละลาย) จะมีความคงตัว ดีกว่าน้ำมันที่สกัดและทำให้บริสุทธิ์ในห้องปฏิบัติการ โดยพบ conjugated diene มีค่าสูงสุดที่ ระยะเวลา 200 วันในน้ำมันที่สกัดโดยวิธีพื้นบ้าน ส่วนน้ำมันที่ทำให้บริสุทธิ์ เกิด autoxidation และ พบ conjugated diene สูงสุดในระยะเวลาเพียง 15 วัน (18) นอกจากนี้ยังพบว่า argan oil มีความ คงตัวต่อความร้อนสูงกว่าน้ำมันพืชชนิดอื่นๆ เนื่องจากอัตราส่วนของ aliphatic fatty acid ต่อ bisallytic CH_{2} group สูงกว่าน้ำมันพืชชนิดอื่นๆ (19)

ปรูมกณสารปs=nจบ phenolic ใน argan oil มีค่าต่ำกว่า 10 ส่วนในล้านส่วน ประกอบ ไปด้วย

Tocopherols ใน argan oil จะมีปริมาณ tocopherol 620 มก./กก. คือ ปริมาณสูงเป็น 2 เท่าของน้ำมันมะกอก (320 มก./กก.) (3) ในบางรายงานก็ระบุวา argan oil มีปริมาณ tocopherol
tocopherol เป็นสารประกอบส่วนน้อย (ร้อยละ 2) ทั้ง beta-, gamma- และ delta-tocopherol แสดงคุณสมบัติเป็น anti-oxidative agents และทำให้น้ำมันมีอายุการเก็บดี (3) ปริมาณของ tocopherol ยังขึ้นกับรูปร่างของผล argan ด้วย พบปริมาณ tocopherol สูงสุดในผลูปกระสวย (1568.60 มก./กก. ของน้ำมัน) รองลงมา คือ จากผลรูปกลม (1141.60 มก./กก.) และผลรูปไข่ (583.80 มก./กก.) (13)

Sterols พบ sterols 4 ชนิด ใน argan oil (22) 2 ชนิดหลัก คือ spinasterol (5 alpha-stigmasta-7,22-dien-3-beta-ol (24-E, 24-S) และ schottenol (5 alpha-stigmasta-7-en-3-betaol (24-R) (1) ในปริมาณร้อยละ 44 และ 48 ตามลำดับ ส่วนประกอบ 2 ชนิดรอง คือ stigmasta8, 22-dien-3beta-ol (22-E, 24-S) และ stigmasta-7, 24-28-dien-3beta-ol (24-Z) มีปริมาณร้อยละ 4 และไม่พบ $\Delta-5$ sterols

Squalene พบในปริมาณ 313 มก./100 ก. ซึ่งต่ำกว่าน้ำมันมะกอก (499 มก./100 ก.) แต่สูงกว่าน้ำมันทานตะวัน (6 มก./100 ก.)

Triterpene alcohols สามารถแยก triterpene alcohols หลายชนิดจากส่วน unsaponifiable matters ของ argan oil (22) ชนิดหลัก 3 ชนิด คือ butyrospermol (ร้อยละ18.1), tirucallol (ร้อยละ 27.9) และ beta-amyrine (ร้อยละ 27.3) สำหรับส่วนประกอบรอง 4 ชนิด คือ lupeol (ร้อยละ 7.1), 24-methylene cycloartanol (ร้อยละ 4.5), citrostadienol (ร้อยละ 3.9) และcycloeucalenol (ร้อยละ <5) (3)

สำหรับสารประกอบ phenolic อื่น นอกเหนือจาก tocopherol คือ vanillic, syringic และ ferulic acids และ tyrosol argan oil จะมีปริมาณสารประกอบ phenolic ทั้งหมดเพียง ไม่เกิน 5 มก/.กก. เท่านั้น ซึ่งจะแตกต่างจาก extra virgin olive oil ซึ่งมีปริมาณสารประกอบ phenolic ทั้งหมดสูงถึง 793 มก./กก. (20)

นอกจากนี้เมื่อทำการวิเคราะห์ argan oil และ กากที่เหลือจากการหีบน้ำมัน (press cake) โดยการวิเคราะห์ด้วยวิธี Folin-Ciocalteu colorimetric method และ GC-MS พบ simple phenols จำนวน 19 ชนิด ทั้งนี้ โดยพบ 16 ชนิดในกากที่เหลือจากการหีบน้ำมัน พบ 6 ชนิดในน้ำมันที่ใช้ รับประทาน (alimentary oil) และ 7 ชนิดในน้ำมันที่ใช้ในเครื่องสำอาง (cosmetic oil) สารประกอบ 15 ชนิดเหล่านี้ คือ (3-hydroxypyridine(3-pyridinol), 6-methyl-3-hydroxypyridine, catechol, resorcinol, 4-hydroxybenzyl alcohol, vanillin, 4-hydroxyphenylacetic acid, vanillyl alcohol, 3,4-dihydroxybenzyl alcohol, 4-hydroxy-3 methoxyphenethyl alcohol, methyl 3, 4 dihydroxybenzoate, hydroxytyrosol, protocatechuic acid, epicatechin และ catechin (23)

สางปร=กอบที่าห้กลิ่เ

สารประกอบที่ให้กลิ่น คือ hydrocarbons, aldehydes, ketones, alcohols, กรด, furans และ pyrazines สารประกอบที่มีไนโตรเจนอยู่ ถือเป็นสารประกอบที่ให้รสถั่ว และรสคั่วหอมใน น้ำมัน ได้แก่ 2-methylpyrazine, 2, 5-dimethylpyrazine, 2, 3-dimethylpyrazine, 2-ethyl-6methylpyrazine, 2, 3, 5-trimethylpyrazine, 2 -ethyl-3, 5-dimethylpyrazine, 3-ethyl-2, 5dimethylpyrazine และ 5 -ethyl-2, 3-dimethyl pyrazine (24)

Can= ©ivy

ใน virgin argan oil ซึ่งเตรียมโดยวิธีการดั้งเดิม พบปริมาณโลหะต่างๆ ดังนี้ เหล็ก (0.8 -4.0 มก./กก.) ทองแดง ($160.4-695.7$ มคก./กก.) โครเมียม ($10.3-55.3$ มคก./กก.) แมงกานีส (18.1-70.8 มคก./ก.) ตะกั่ว (28.5-450.0 มคก./กก.) (25)

ผคการกักษาทางเภสัชวิทยา

การศึกษาทางเภสัชวิทยาของ argan oil ส่วนใหญ่เป็นการศึกษาเกี่ยวกับการลดความเสี่ยง ในโรคหัวใจและหลอดเลือด โดยยังมีการศึกษาทางคลินิกน้อย ส่วนการศึกษาอื่นๆ เป็นการศึกษา เกี่ยวกับฤทธิ์ต้านการแบ่งตัวของเซลล์ ผลต่อเซลล์ภูมิคุ้มกัน และโรคเบาหวาน

1. ผลของ argan oil ต่อโรคหัวใจและหลอดเลือด

การศึกษาทั้งในหลอดทดลอง ในสัตว์ทดลอง และการศึกษาทางคลินิก บ่งชี้ว่ว argan oil อาจจะมีประโยชน์ในการป้องกันโรคหัวใจและหลอดเลือด และการบริโภค argan oil อาจจะมีผล ในการป้องกันการแข็งตัวของหลอดเลือด (26)

1.1 ผลการศึกษาในหลอดทดลอง และการศึกษาในสัตว์ทดลอง

1.1.1 ฤทธิ์ยับยั้งการเกาะกลุ่มของเกล็ดเลือด (platelet aggregation) platelet hyperactivity เป็นปัจจัยที่สำคัญที่สุดปัจจัยหนึ่งที่ทำให้เกิดการแข็งตัวของหลอดเลือดและโรคหัวใจ ในการศึกษาผลของ argan oil (ร้อยละ $0.2,0.5,1,2$) ต่อการเกาะกลุมของเกล็ดเลือดในหลอด ทดลอง (in vitro) และนอกร่าง (ex vivo) และต่อเวลาในการแข็งตัวของเลือด (bleeding time) ที่หาง หนูแรท (in vivo) พบว่า หลังการให้ argan oil ทางปาก (10 มล./กก./วัน) นาน 4 สัปดาห์ argan oil แสดงฤทธิ์ยับยั้งสูงสุดต่อการเกาะกลุ่มของเกล็ดเลือด in vivo ร้อยละ 46.4 ± 4.3 และ ex vivo ร้อยละ 43.4 ± 5.51 เมื่อถูกเหนี่ยวนำด้วยสารต่าง ๆ แต่ปริมาณเกล์ดเลือดและเวลาในการแข็งตัว ของเลือด ไม่มีการเปลี่ยนแปลง แสดงให้เห็นว่า argan oil อาจจะออกฤทธิโดยตรงต่อขั้นตอนของการ

เกาะกลุม คือ ขั้นตอนการจับของ fibrinogen กับ Gpllb/IIla platelet receptors โดยไมมีมลล่อความ เหนียวแนนในการยึดตัวกับผนังหลอดเลือด ดังนั้นการรับประทาน argan oil อาจให้ผลดีในการปรับ platelet hyperactivity ให้กลับเข้าสูสสภาวะปกติ เป็นการป้องกันการเกิดโรคหัวใจและหลอดเลือด (27)
1.1.2 ฤทธิ์ยับยั้ง human low-density lipoprotein (LDL) oxidation และส่งเสริม cholesterol efflux จาก human THP-1 macrophages ในการศึกษาสารสกัด phenolic ของ virgin argan oil ในการป้องกัน low-density lipoprotein (LDL) ของมนุษย์จากการเกิด lipid peroxidation และส่งเสริม cholesterol efflux ที่เกิดจาก HDL lipoprotein ในการศึกษาทำการ incubate human LDLs กับ CuSO_{4} โดยมีสารสกัด phenolic ของ virgin argan oil อยูด้วยใน ความเขมขน $0-320$ มคก./มล. พบวาการ incubate LDL กับสารสกัด phenolic ของ virgin argan oil มีผลยืดเวลาการเกิด (lag phase) และลดอัตราการเกิด lipid peroxidation อยางมีนัยสำคัญ $(\mathrm{P}<0.01)$ และลดการหายไปของวิตามินอี ทั้งนี้โดยขึ้นกับปริมาณที่ใช้ การ incubate HDL กับสาร สกัด phenolic ของ virgin argan oil มีผลเพิ่ม fluidity ของ HDL phospholipid bilayer $(P=0.0004)$ และ HDL-mediated cholesterol efflux จาก THP-1 macrophages โดยสรุปคือ virgin argan oil เป็นแหล่งให้ phenolic antioxidants ซึ่งมีผลต่อโรคหัวใจและหลอดเลือด โดยยับยั้งการเกิด LDLoxidation และส่งเสริมการขนส่งคอเลสเตอรอลกลับไปที่ตับ คุณสมบัติต่างๆ เหล่านี้ มีผลเพิ่มฤทธิ์ ต้านการแข็งตัวของหลอดเลือด (anti-atherogenic potential) ของ HDL (28)

1.1.3 ฤทธิ์ลดความดันโลหิตและปรับปรุงการทำงานของเซลล์บุหลอดเลือดที่ผิด

 ปกติ (Endothelial dysfunction) จากการศึกษาผลของ argan oil (10 มล./กก.) ตอความดัน โลหิตและการทำงานของเซลล์บุหลอดเลือดของหนูแรทที่มีความดันโลหิตสูง (spontaneously hypertensive rats (SHR)) และหนูแรทพันธุ์ Wistar-Kyoto ที่มีความดันโลหิตปกติ โดยวัด ความดันโลหิต systolic และอัตราการเต้นของหัวใจทุกสัปดาห์โดยวิธี tailcuff (วัดความดันโลหิต ที่หลอดเลือดที่หาง) และวัดการทำงานของเซลล์บุหลอดเลือดโดยวัดการคลายตัวของวงหลอดเลือด แดงใหญ่ (aortic ring) ที่ถูกเหนี่ยวนำให้หดตัวโดย carbachol (10^{-8} ถึง 10^{-4} โมลาร์) และหลอดเลือด mesenteric ขนาดเล็กที่ทำให้หดตัวกอนแลวด้วย phenylephrine พบว่ argan oil มีผลลด ความดันโลหิตของหนู $S H R$ หลังสัปดาห์ที่ 5 อย่างมีนัยสำคัญ ($P<0.05$) และเพิ่มการทำงานของ เซลล์บุหลอดเลือดของหนู $\operatorname{SHR}(\mathrm{P}<0.01)$ ผลของ argan oil นี้ถูกยับยั้งด้วย NO synthase inhibitor, L-N-W-nitroarginine (3×10^{-5} โมลาร์) และ indomethacin (10^{-5} โมลาร์) แสดงว่าการออกฤทธิ์ของ argan oil ผ่านการสร้างและหลั่ง nitric oxide และเมตาบอไลท์ของ arachinoic acid ที่เซลล์บุหลอดเลือด เมื่อศึกษา enzyme immunoassay ของ thromboxane B_{2} พบว่าการหลั่งของ thromboxane A_{2} ลดลงอย่างมีนัยสำคัญ $(\mathrm{P}<0.05)$ ทั้งในหลอดเลือดแดงใหญ่ และหลอดเลือด mesenteric ขนาดเล็กหลังการให้ argan oil และเมื่อทำการทดสอบโดยมี thromboxane A_{2} prostaglandin H_{2} receptor antagonist ICI 192,605 (10^{-5} โมลาร์) ก็พบวาสามารถยืนยันผลดังกลาว นอกจากนี้ argan oil ยังมีผลเพิ่มการทำงานของเอนไซม์ antioxidants superoxide dismutase และ catalase ทำให้ oxidative stress ลดลง เป็นผลดีต่อการทำงานของเซลล์บุหลอดเลือด (29)
1.1.4 ฤทธิ์ลดระดับไขมันและลดระดับคอเลสเตอรอลในเลือด เมื่อเหนี่ยวนำให้ ระดับไขมันสูงโดยให้อาหารที่มีแคลอรี่และคอเลสเตอรอลสูง ในหนูแรท 16 ตัว (Meriones Shawi rats ซึ่งเป็นสัตวักัดแทะในตระกูล Gerbillideae) หนู 8 ตัว ได้รับ argan oil ในขนาด 1 มล./100 ก. น้ำหนักตัว ทุกวัน โดยให้ทางปากนาน 7 สัปดาห์ ส่วนกลุมควบคุมได้รับอาหารที่มีแคลอรี่และ คอเลสเตอรอลสูง พบว่าหลัง 7 สัปดาห์ ระดับคอเลสเตอรอลลดลงรอยละ 36.67 ($P<0.01$), LDLcholesterol ลดลงรอยละ $67.70(\mathrm{P}<0.00)$, triglycerides ลดลงรอยละ $30.67(\mathrm{P}<0.05)$ และ น้ำหนักตัวลดลงร้อยละ $12.7(P<0.05)$ ส่วนระดับ HDL-cholesterol ไม่เปลี่ยนแปลง (30)
1.1.5 ผลต่อการทำงานของหัวใจก่อนและหลังทำให้ขาดเลือด (ischemia) และ ต่อการทำงานของ antioxidant enzyme ของหัวใจ การทดสอบในหนูแรทพันธุ์ Wistar ที่ได้รับ argan oil ในขนาด 5 มล./กก./วัน ทางปาก เป็นเวลา 8 สัปดาห์ ทำการหล่อเลี้ยง (perfuse) หัวใจ และทำให้เกิดการขาดเลือด (global ischemia) และตามด้วยการให้ของเหลวหล่อเลี้ยงหัวใจอีกครั้ง (reperfusion) ทำการวัดการทำงานของ antioxidant enzymes ของหัวใจ พบว่ argan oil เหนี่ยวนำ ให้เกิด

1. การทำงานของหัวใจเสียหาย (damage) ในช่วงก่อนการขาดเลือด (preischemic period)
2. ลดการพื้นตัวการทำงานระหว่างการ reperfusion
3. เพิ่มการทำงานของเอนไซม์ catalase อยางมีนัยสำคัญ

โดยสรุป คือ argan oil เพิ่มความไวของหัวใจต่อการขาดเลือด และ reperfusion แต่งง ไม่ทราบกลไก (31)
1.1.6 ผลต่อการหดตัวของหลอดเลือดแดงใหญ่ จากการศึกษาในหนูแรทพันธุ์ Wistar เพศผู้ 16 ตัว ($60-70$ ก.) โดยให้ argan oil ทางปาก ในขนาด 5 มล./กก. น้ำหนักตัว/วัน หลังจาก 8 สัปดาห์ ทำการวัดการหดตัวของหลอดเลือด โดยวัดจากวงหลอดเลือดแดงใหญ่ (aortic rings) ที่แยกออกมาจากหนูแรทกลุ่มควบคุม และหนูแรทที่ได้รับ argan oil โดยให้สารกระตุ้นการหดตัว คือ phenylephrine (PE, 10^{-6} โมลาร์) สารที่ทำให้เกิดการคลายตัวโดยผ่านเซลล์เยื่อบุหลอดเลือด
(endothelium-dependent relaxation) คือ acetylcholine (Ach, 10^{-6} โมลาร์) และสารที่ทำให้เกิดการ คลายตัวโดยไม่ผ่านเซลล์เยื่อบุหลอดเลือด (endothelium-independent relaxation) คือ sodium nitroprusside ในอางเลี้ยงเนื้อเยื่อ พบว่าการหดตัวของหลอดเลือดไมมีความแตกต่างระหว่างกลุ่ม ควบคุมและกลุ่ม argan oil โดยการหดตัวสูงสุด PE เท่ากับ 1.68 ± 0.20 และ 2.14 ± 0.20 ก. ในกลุ่มควบคุม และกลุ่ม argan oil ตามลำดับ สำหรับ aortic rings ที่ทำให้เกิดการหดตัวก่อน แล้วทำให้คลายตัว ค่า endothelium-dependent relaxation ต่อ Ach และ endotheliumindependent relaxation ไม่มีการเปลี่ยนแปลง โดยค่าการคลายตัวสูงสุดต่อ Ach เท่ากับร้อยละ 54 และ 47 ในกลุ่มควบคุม และกลุ่ม argan oil ตามลำดับ การเติม $\mathrm{H}_{2} \mathrm{O}_{2}$ ใน organ bath ความ เข้มข้น $1,5,10$ มิลลิโมลาร์ นาน 20 นาที เพื่อทำให้เกิดภาวะ oxidative stress ทำให้เกิดการ เปลี่ยนแปลงของการหดตัวของหลอดเลือดโดยขึ้นกับขนาดที่ให้ พบว่าการลดลงของการหดตัวของ หลอดเลือดที่ถูกเหนี่ยวนำโดย PE และการคลายตัวที่ถูกเหนี่ยวนำโดย Ach ในทั้ง 2 กลุ่ม คล้ายคลึงกัน ดังนั้น argan oil ไมมีผลต่อ reactivity หรือ sensitivity ของหลอดเลือดในภาวะที่มี oxidative stress (32)

จากการศึกษาในสัตว์ทดลอง พบว่า argan oil มีผลยับยั้งการเกาะกลุ่มของเกล็ดเลือด ลดคอเลสเตอรอลในเลือด ลดความดันโลหิต ช่วยปรับปรุงการทำงานของเซลล์บุหลอดเลือด แต่มีรายงานที่พบว่า argan oil ทำให้หัวใจเสียหายในสภาวะขาดเลือด และบางรายงานระบุว่า argan oil ไมมีผลต่อการทำงานของหลอดเลือดแดงใหญ่

1.2 การศึกษาทางคลินิก

1.2.1 ผลของ argan oil ต่อระดับไขมันในพลาสมา fasting plasma lipids, วิตามิน ที่มีคุณสมบัติเป็น antioxidant และความไวต่อ (LDL oxidation susceptibility) การศึกษา ทางคลินิกในอาสาสมัครที่สุขภาพดี (ชาย 20 คน, หญิง 76 คน) โดยที่อาสาสมัคร 62 คน เป็นผู้ ที่รับประทาน argan oil อยู่เป็นประจำ และ 34 คน ไม่รับประทาน argan oil ทำการวัดระดับ ไขมันในพลาสมา, วิตามินที่มีคุณสมบัติเป็น antioxidant, LDL oxidation susceptibility แล้วทำ การวัด LDL oxidation ในหลอดทดลอง และทำการวัดสารประกอบ phenolic และ apolar ของ virgin argan oil พบว่าอาหารของกลุ่มที่รับประทาน argan oil ประกอบไปด้วยกรดไขมันไมอิ่มตัว (polyunsaturated fatty acids) ที่สูงกว่ากลุ่มที่ไม่ได้รับประทานอย่างมีนัยสำคัญ $(8.8 \pm 1.0$ และ 6.6 ± 0.9 ก. ตามลำดับ, $\mathrm{P}<0.05)$ อาสาสมัครกลุ่มที่รับประทาน argan oil มีระดับ LDL cholesterol ในเลือด (ร้อยละ12.7, $\mathrm{P}<0.05$) ต่ำกว่า และระดับไขมัน (ร้อยละ $25.3, \mathrm{P}<0.05$) ที่ต่ำกว่ากลุ่มที่ไม่ รับประทาน argan oil อย่างมีนัยสำคัญ ในกลุ่ม argan oil ระดับ lipoperoxides ในเลือดต่ำกว่า
(รอยละ 58.3, $\mathrm{P}<0.01$) ส่วนค่า molar ratio alpha-tocopherol/total cholesterol (รอยละ21.6, $P<0.05$) และ alpha-tocopherol (ร้อยละ13.4, $\mathrm{P}<0.05$) สูงกว่ากลุ่มที่ไม่ได้รับประทาน argan oil แม้่าในกลุ่ม argan oil จะมีระดับ antioxidants ในเลือดสูงกว่า และระดับ lipoperoxides ต่ำกว่า กลุ่มที่ไม่ได้รับประทาน แต่ LDL oxidation susceptibility ของทั้ง 2 กลุ่ม ก็ยังคงมีค่าใกล้เคียงกัน นอกจากนี้ก็พบว่ามีความสัมพันธ์กันชัดเจนระหว่างค่าที่สูงขึ้นของสารสกัด phenolic, sterol, และ tocopherol กับ LDL-lag phase $(\mathrm{P}<0.05)$ โดยสรุปคือ การรับประทาน virgin argan oil สม่ำเสมอ จะมีผลเหนี่ยวนำให้ LDL-cholesterol ลดต่ำลง นอกจากนี้ยังแสดงคุณสมบัติเป็น antioxidant จึงจัด virgin argan oil เป็นอาหารธรรมชาติที่ลดความเสี่ยงในการเกิดโรคหัวใจและหลอดเลือด (33)
1.2.2 ผลของ argan oil ต่อระดับไขมัน และ apolipoproteins ในการศึกษา Nutritional Intervention Study ถึงผลของ virgin argan oil ต่อการเปลี่ยนแปลงระดับไขมันในเลือด และการลดความเสี่ยงในการเกิดโรคหัวใจและหลอดเลือดในชาวโมร็อคโคที่สุขภาพดี โดยมีอาสา สมัคร 60 คน ที่ใหรับประทานเนย (25 ก./วัน) ในช่วงเวลา 2 สัปดาห์ (stabilization period) แล้วแบ่ง อย่างสุ่มเป็น 2 กลุ่ม คือ กลุ่มที่ทำการทดลองไดรับ virgin argan oil 25 ก./วัน ระยะเวลา 3 สัปดาห์ (intervention period) และกลุ่มควบคุมที่ไดรับ extra virgin olive oil 25 ก./วัน ทำการชั่งน้ำหนัก วัดความดันโลหิต ปริมาณอาหารที่รับประทาน และเมื่อสิ้นสุดระยะเวลาของการใหรับประทาน อาหารแต่ละชนิด พบว่าเลือดมีค่า high-density lipoprotein (HDL) cholesterol และ apolipoprotein $A-1$ สูงขึ้นอย่างมีนัยสำคัญทั้งในกลุ่ม virgin argan oil (ร้อยละ $8.4, P=0.012$ และ ร้อยละ $5.2, P=0.027$ ตามลำดับ) และกลุ่ม extra virgin olive oil (ร้อยละ $17.3, P=0.01$ และ ร้อยละ $5.9, P=0.036$ ตามลำดับ) อย่างไรก็ตาม ค่า low-density lipoprotein (LDL) cholesterol และ apolipoprotein B (ร้อยละ 13.8, $P=0.037$ และ ร้อยละ $7.8, P=0.039$ ตามลำดับ) ลดลงอย่าง มีนัยสำคัญเฉพาะในกลุ่ม extra virgin olive oil เมื่อเปรียบเทียบกับ stabilization period ขณะที่ค่า triglycerides ลดลงอย่างมีนัยสำคัญ ร้อยละ $17.5(P=0.039)$ เฉพาะในกลุ่ม virgin argan oil โดยสรุป คือ extra virgin olive oil มีผลลดระดับคอเลสเตอรอล ส่วน virgin argan oil มีผลลดระดับ triglycerides (34)
1.2.3 ฤทธิ์ต้านการแข็งตัวของหลอดเลือด (antiatherogenic effect) การศึกษาทาง คลินิกในชายอายุน้อย 60 คนใน interventional study โดยให้อาหารควบคุม 2 สัปดาห์ และให้ รับประทานเนย 25 ก./วัน หลังจากนั้นจึงแบ่งอย่างสุ่ม เป็น 2 กลุ่ม โดยให้ virgin argan oil หรือ extra virgin olive oil (กลุมควบคุม) 25 ก./วัน ทำการวัดการทำงานของ paraoxonase (PON1) และ วิตามินที่มีคุณสมบัติเป็น antioxidant และการเกิด oxidation ของ LDL พบว่า การทำงานของ

PON1 เพิ่มขึ้นอย่างมีนัยสำคัญในทั้ง 2 กลุ่ม และ ค่า lipoperoxides และ การเกิด conjugated dienes ลดลงอย่างมีนัยสำคัญในทั้ง 2 กลุ่ม เมื่อเทียบกับค่าก่อนการรับประทาน oil ($\mathrm{P}=0.001$ และ $\mathrm{P}=0.014$ ตามลำดับ) ระดับวิตามินอีเพิ่มสูงขึ้นอย่างมีนัยสำคัญเฉพาะในกลุม virgin argan oil ($P=0.007$) ส่วนการเกิด peroxidation ของ LDL เพิ่มสูงขึ้นอย่างมีนัยสำคัญใน lag phase และลดลงอย่างมีนัยสำคัญในช่วงการเกิดการสร้าง maximum diene ในกลุ่ม virgin argan oil (P $=0.005$) และ extra virgin olive oil ($P=0.041$ และ $P=0.005$ ตามลำดับ) โดยสรุป คือ extra virgin olive oil มีผลดีต่อ antioxidant status ในเลือด และ virgin argan oil ให้ผลเช่นเดียวกัน (35) 2. ฤทธิ์ความเป็นพิษต่อเซลล์ (Cytotoxic effect) และ ฤทธิ์ยับยั้งการแบ่งตัวของเซลล์ (Antiproliferative effect)

การศึกษาฤทธิ์ยับยั้งการแบ่งตัวของเซลล์้้อย มีการศึกษาในหลอดทดลองเพียง 3 ฉบับ ดังนี้

2.1 ฤทธิ้ความเป็นพิษต่อเซลล์และฤทธิ์ยับยั้งการแบ่งตัวของเซลล์มะเร็งต่อมลูกหมาก

 การศึกษาถทธิ์ยับยั้งของ polyphenols และ sterol ที่สกัดได้จาก virgin argan oil ต่อ การแบงตัวของเซลล์มะเร็งต่อมลูกหมาก (Human prostatic cell lines) (DU145, LNCaP และ PC3) โดยทำการวัดความเป็นพิษต่อเซลล์ การยับยั้งการแบ่งตัวของเซลล์มะเร็ง ลักษณะหรือ รูปรางของเซลล์ที่เปลี่ยนแปลงเมื่อตรวจสอบด้วยกล้องจุลทรรศน์ ทั้งนี้โดยเปรียบเทียบกับ $2-$ methoxy estradiol (2ME2) ซึ่งใช้เป็น positive control พบว่า polyphenols และ sterols ของ virgin argan oil และ 2 ME 2 แสดงฤทธิ์ความเป็นพิษต่อเซลล์ และฤทธิ์ยับยั้งการแบ่งตัวของเซลล์ มะเร็งทั้ง 3 ชนิด โดยที่ปริมาณ polyphenols ที่แสดงฤทธิ์ยับยั้งการแบ่งตัวของเซลล์ของ DU145 และ LNCaP cell lines คล้ายคลึงกัน โดยค่า GI 50 (ความเข้มข้นที่ยับยั้งการเจริญร้อยละ 50 เมื่อเปรียบเทียบกับกลุ่มควบคุม) มีค่าเท่ากับ 73 และ 70 มคก./มล. ตามลำดับ ส่วน sterols แสดงฤทธิ์ยับยั้งการแบงตัวที่ G150 เท่ากับ 46 และ 60 มคก./มล. สำหรับ DU145 และ LNCaP cell lines สำหรับ PC3 cell line, argan sterols แสดงฤทธิ์ยับยั้งการแบ่งตัวของเซลล์มะเร็งไดดีที่สุด โดยมีค่า G150 เท่ากับ 43 มคก./มล. ส่วนผลการตรวจสอบด้วยกล้องจุลทรรศน์ พบว่ามี nuclei ที่อยู่ในลักษณะ pro-apoptotic ใน LNCa P cell ที่ถูก treat ด้วย IC50 ของ polyphenols หรือ sterols เมื่อเปรียบเทียบกับเซลล์ควบคุม (36)สำหรับ tocopherols และ saponins ซึ่งสกัดได้จาก argan tree เช่นกัน ทำการศึกษา โดยวิธีเดียวกัน พบว่า tocopherols, saponins, และ 2-methoxy estradiol แสดงฤทธิ์ความเป็นพิษ ต่อเซลล์ และฤทธิ์ต้านการแบ่งตัวของ cell lines ที่ทดสอบ พบว่าฤทธิ์ของ tocopherols ที่ดีที่สุด

คือ ฤทธิ์ต่อ DU 145 , LNCaP cell lines ((G150 เท่ากับ 28 และ 32 มคก./มล. ตามลำดับ) สำหรับ saponins fraction แสดงฤทธิ์ยับยั้งการแบ่งตัวที่ดีที่สุด ต่อ PC 3 cell line โดยมีค่า GI 50 เท่ากับ 18 มคก./มล. (37)

2.2 ฤทธี์ยับยั้งการเจริญูของเซลล์มะเร็งตับ

การศึกษาในสารสกัดต่างๆ จากผล argan คือ ส่วน keel, cake และสารสกัด argan oil โดยทดสอบในเซลล์มะเร็งตับ HTC hepatoma cell line เพื่อศึกษษาผลต่อ cell viability ซึ่งวัดโดย Trypan Blue exclusion และวัดการตอบสนองต่ออินซูลิน โดยวัดการกระตุ้น extracellular regulated kinase (ERK), ERK kinase (MEK) และ protein kinase B (PKB/Akt) signalling components ซึ่งเป็นสัญญาณภายในเซลล์จากการกระตุ้นของอินซูลิน พบว่าสารสกัดทั้งหมด ไม่แสดงฤทธิ์ความเป็นพิษต่อเซลล์อย่างมีนัยสำคัญ สารสกัดบางชนิดแสดง bi-phasic effect ต่อ การกระตุ้น $E R K$ สารสกัดในขนาดต่ำๆ มีผลเพิ่มการกระตุ้นเล็กน้อยต่อ ERK ในการตอบ สนองต่ออินซูลิน ในขณะที่ขนาดที่สูงกว่าสามารถลบล้างการตอบสนองได้อย่างสมบูรณ์ ในทาง ตรงกันข้าม ไม่พบว่ามีสารสกัดชนิดใดที่มีผลอย่างมีนัยสำคัญต่อ $M E K$ และมีฉฉพาะ cake saponin fraction 1 ส่วนที่มีผลส่งเสริมการกระตุ้ PKB/Akt ที่ถูกเหนี่ยวนำโดยอินซูลินดังนั้นการรี่สารสกัด argan oil แสดงฤทธิ์เฉพาะเจาะจงต่อการกระตุ้น ERK ทำให้มีการพิจารณาถึงฤทถิ์บับยั้ง การแบ่งตัว จึงได้ทำการทดสอบ transformed cell lines อื่นๆ (HT-1080 และ MSV-MDCK-INV (ells) และพบว่ามีผลคล้ายคลึงกัน นอกจากนี้การยับยั้งการกระตุ้น $E R K$ ยังมีผลเกี่ยวข้องกับ การสังเคราะห์ DNA ที่ลดลง ดังจะพบได้่ในการทดสอบ (${ }^{3} \mathrm{H}$) thymidine incorporation ดังนั้นผลที่ได้

จึงอาจชี้ให้เห็นว่าผลิตภัณฑ์ของ Argania spinosa อาจจะมีประโยชน์ในการรักษาโรคที่เกี่ยวข้อง กับการแบ่งตัวของเซลล์ได้ (38)
3. ฤทธิ์ควบคุมการดี้ออินซูลิน และ glucose tolerance

ในการศึกษาการให้ argan oil ในสัตว์ทดลองโดยใช้รูปแบบอาหารที่ทำให้เกิดการดื้อ อินซูลิน อันเนื่องมาจากความอ้วน โดยป้อนหนูแรท ในกลุ่มควบคุมด้วยอาหารมาตรฐาน กลุมไขมัน สูง-ซูโครสสูง หรือกลุมไขมันสูง-ซูโครสสูง ที่มีการแทนที่ไขมัน ร้อยละ 6 ด้วยน้ำมันปลา หรือ argan oil ตามลำดับ พบว่าอาหารที่มีไขมันสูง-ซูโครสสูง มีผลเพิ่มน้ำหนักเนื้อเยื่อไขมัน และการดื้อ อินซูลิน ดังแสดงโดยค่าระดับน้ำตาลในเลือดหลังอดอาหาร (fasting glucose) ที่สูงขึ้น และค่า glycemic และการตอบสนองต่ออินซูลินที่สูงขึ้นมากในการทำ glucose tolerance test argan oil ไม่ป้องกันความอ้วน แต่ทำใหระดับน้ำตาลหลังอดอาหาร (fasting glycemia) กลับคืนสู่ปกติเท่ากับ ค่าของกลุ่มที่ได้รับอาหารมาตรฐาน นอกจากนี้ argan oil ยังมีผลปรับปรุงการเติมกลุมฟอสเฟตโดย สัญญาณของอินซูลิน (insulin-dependent phosphorylations) ของ Akt และ ERK และในเนื้อเยื่อ ไขมัน การตอบสนองเหล่านี้เพิ่มขึ้นมากกว่าค่าที่พบในกลุ่มควบคุมที่ได้รับอาหารมาตรฐาน โดยสรุป คือ argan oil สามารถปรับปรุงความผิดปกติบางชนิดที่เกี่ยวกับ metabolic และสัญญาณ ภายในเซลล์เนื่องจากการกระตุ้นของ insulin ซึ่งเกี่ยวข้องกับการใหรับประทานอาหารไขมันสูงซูโครสสูง (39)
4. ผลต่อเซลล์ภูมิคุ้มกันและการทำหน้าที่ของเซลล์ภูมิคุ้มกัน

เมื่อป้อนหนูแรทเพศผู้โดยให้น้ำมันต่างๆ 5 ชนิด คือ น้ำมันปลา argan oil น้ำมันมะกอก น้ำมันมะพร้าว หรือ น้ำมันทานตะวัน นาน 4 สัปดาห์ และวิเคราะห์สัดส่วนของกรดไขมันในเลือด และไขมันของ thymocyte (เซลล์จากต่อมไทมัส) โดยโยงกับการแบ่งตัว (proliferation) ที่ถูก เหนี่ยวนำโดย mitogen และการทำงานของ phospholipase $D(P L D)$ ของ thymocytes พบว่า สัดส่วนของ $18: 2 \mathrm{~W}-6$ ใน phospholipids ของ thymocyte จากหนูขาวที่ได้รับ argan oil มีค่าต่ำกว่า กลุ่มน้ำมันทานตะวัน และกลุมน้ำมันปลาอย่างมีนัยสำคัญ แต่สูงกว่ากลุมน้ำมันมะกอก และกลุ่ม น้ำมันมะพร้าว นอกจากนี้ พบความสัมพันธ์เป็นเส้นตรงอย่างมีนัยสำคัญ ระหว่างการแบ่งตัวของ thymocyte กับ สัดส่วนของ $18: 2 \mathrm{~W}-6$ ใน phospholipids ของ thymocytes โดยไม่ขึ้นกับ ชนิดของอาหาร สำหรับการแบงตัวของ thymocytes อันมีผลมาจากการกระตุ้นของ mitogen มีความสัมพันธ์ผกผันกับค่าการทำงานของ PLD ที่วัดได้ใน thymocytes ปกติ (intact) เมื่อทำ การทดลองโดย Western blotting พบว่า ค่าการทำงานของ PLD ที่เกิดจากความแตกต่างของ อาหาร มีผลมาจากความแตกต่างกันของ expression ของ PLD_{2} protein โดยสรุปคือ ผลของ
argan oil ต่อเซลล์ภูมิคุ้มกัน คล้ายคลึงกับของน้ำมันมะกอก และสามารถใช้ argan oil ในการเตรียม เป็นอาหารสมดุลย์ได้โดยไม่มีผลไม่พึงประสงค์ต่อการทำงานของเซลล์ภูมิคุ้มกัน (40)

โดยสรุปแล้ว argan oil เป็นน้ำมันที่มีคุณลักษณะเฉพาะตัวที่นาสนใจ เนื่องจากมีกลิ่นรส ที่แปลก คือรสชาติคล้าย hazel nut โดยมีความพยายามที่จะสงเเสริมให้มีการบริโภค หรือนำไปใช้ ประโยชน์ในด้านสุขภาพ และในด้านเครื่องสำอาง (ไม่ได้กล่าวถึงในที่นี้) เพื่อจะอนุรักษ์ต้น argan ซึ่งเป็นพืชพื้นเมืองในโมร็อคโคไว้ในทะเลทรายต่อไป การใช้ประโยชนมีมแวโนมในเรื่องของการ ป้องกัน โรคหัวใจและหลอดเลือด โดยส่วนใหญ่เป็นการศึกษาในหลอดทดลองและในสัตว์ทดลอง มีการศึกษาทางคลินิกน้อย ยังคงจะต้องติดตามความก้าวหน้าเกี่ยวกับ argan oil ต่อไป

